

Flask-CORS

[image: Build Status] [https://travis-ci.org/corydolphin/flask-cors] [image: Latest Version] [https://pypi.python.org/pypi/Flask-Cors/] [image: Supported Python versions] [https://img.shields.io/pypi/pyversions/Flask-Cors.svg]
[image: License] [https://pypi.python.org/pypi/Flask-Cors/]

A Flask extension for handling Cross Origin Resource Sharing (CORS),
making cross-origin AJAX possible.

This package has a simple philosophy, when you want to enable CORS, you
wish to enable it for all use cases on a domain. This means no mucking
around with different allowed headers, methods, etc. By default,
submission of cookies across domains is disabled due to the security
implications, please see the documentation for how to enable
credential’ed requests, and please make sure you add some sort of
CSRF [http://en.wikipedia.org/wiki/Cross-site_request_forgery]
protection before doing so!

Installation

Install the extension with using pip, or easy_install.

$ pip install -U flask-cors

Usage

This package exposes a Flask extension which by default enables CORS support on all routes, for all origins and methods. It allows parameterization of all CORS headers on a per-resource level. The package also contains a decorator, for those who prefer this approach.

Simple Usage

In the simplest case, initialize the Flask-Cors extension with default
arguments in order to allow CORS for all domains on all routes. See the
full list of options in the documentation [https://flask-cors.corydolphin.com/en/latest/api.html#extension].

from flask import Flask
from flask_cors import CORS

app = Flask(__name__)
CORS(app)

@app.route("/")
def helloWorld():
 return "Hello, cross-origin-world!"

Resource specific CORS

Alternatively, you can specify CORS options on a resource and origin
level of granularity by passing a dictionary as the resources option,
mapping paths to a set of options. See the
full list of options in the documentation [https://flask-cors.corydolphin.com/en/latest/api.html#extension].

app = Flask(__name__)
cors = CORS(app, resources={r"/api/*": {"origins": "*"}})

@app.route("/api/v1/users")
def list_users():
 return "user example"

Route specific CORS via decorator

This extension also exposes a simple decorator to decorate flask routes
with. Simply add @cross_origin() below a call to Flask’s
@app.route(..) to allow CORS on a given route. See the
full list of options in the decorator documentation [https://flask-cors.corydolphin.com/en/latest/api.html#decorator].

@app.route("/")
@cross_origin()
def helloWorld():
 return "Hello, cross-origin-world!"

Documentation

For a full list of options, please see the full
documentation [https://flask-cors.corydolphin.com/en/latest/api.html]

Troubleshooting

If things aren’t working as you expect, enable logging to help understand
what is going on under the hood, and why.

logging.getLogger('flask_cors').level = logging.DEBUG

Tests

A simple set of tests is included in test/. To run, install nose,
and simply invoke nosetests or python setup.py test to exercise
the tests.

Contributing

Questions, comments or improvements? Please create an issue on
Github [https://github.com/corydolphin/flask-cors], tweet at
@corydolphin [https://twitter.com/corydolphin] or send me an email.
I do my best to include every contribution proposed in any way that I
can.

Credits

This Flask extension is based upon the Decorator for the HTTP Access
Control [http://flask.pocoo.org/snippets/56/] written by Armin
Ronacher.

API Docs

This package exposes a Flask extension which by default enables CORS support on all routes, for all origins and methods. It allows parameterization of all CORS headers on a per-resource level. The package also contains a decorator, for those who prefer this approach.

Extension

This is the suggested approach to enabling CORS. The default configuration
will work well for most use cases.

	
class flask_cors.CORS(app=None, **kwargs)

	Initializes Cross Origin Resource sharing for the application. The
arguments are identical to cross_origin(), with the addition of a
resources parameter. The resources parameter defines a series of regular
expressions for resource paths to match and optionally, the associated
options to be applied to the particular resource. These options are
identical to the arguments to cross_origin().

The settings for CORS are determined in the following order

	Resource level settings (e.g when passed as a dictionary)

	Keyword argument settings

	App level configuration settings (e.g. CORS_*)

	Default settings

Note: as it is possible for multiple regular expressions to match a
resource path, the regular expressions are first sorted by length,
from longest to shortest, in order to attempt to match the most
specific regular expression. This allows the definition of a
number of specific resource options, with a wildcard fallback
for all other resources.

	Parameters

	
	resources (dict [https://docs.python.org/3/library/stdtypes.html#dict], iterable or string) – The series of regular expression and (optionally) associated CORS
options to be applied to the given resource path.

If the argument is a dictionary, it’s keys must be regular expressions,
and the values must be a dictionary of kwargs, identical to the kwargs
of this function.

If the argument is a list, it is expected to be a list of regular
expressions, for which the app-wide configured options are applied.

If the argument is a string, it is expected to be a regular expression
for which the app-wide configured options are applied.

Default : Match all and apply app-level configuration

	origins (list [https://docs.python.org/3/library/stdtypes.html#list], string or regex) – The origin, or list of origins to allow requests from.
The origin(s) may be regular expressions, case-sensitive strings,
or else an asterisk

Default : ‘*’

	methods (list [https://docs.python.org/3/library/stdtypes.html#list] or string) – The method or list of methods which the allowed origins are allowed to
access for non-simple requests.

Default : [GET, HEAD, POST, OPTIONS, PUT, PATCH, DELETE]

	expose_headers (list [https://docs.python.org/3/library/stdtypes.html#list] or string) – The header or list which are safe to expose to the API of a CORS API
specification.

Default : None

	allow_headers (list [https://docs.python.org/3/library/stdtypes.html#list], string or regex) – The header or list of header field names which can be used when this
resource is accessed by allowed origins. The header(s) may be regular
expressions, case-sensitive strings, or else an asterisk.

Default : ‘*’, allow all headers

	supports_credentials (bool [https://docs.python.org/3/library/functions.html#bool]) – Allows users to make authenticated requests. If true, injects the
Access-Control-Allow-Credentials header in responses. This allows
cookies and credentials to be submitted across domains.

	note

	This option cannot be used in conjuction with a ‘*’ origin

Default : False

	max_age (timedelta, integer, string or None [https://docs.python.org/3/library/constants.html#None]) – The maximum time for which this CORS request maybe cached. This value
is set as the Access-Control-Max-Age header.

Default : None

	send_wildcard (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, and the origins parameter is *, a wildcard
Access-Control-Allow-Origin header is sent, rather than the
request’s Origin header.

Default : False

	vary_header (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the header Vary: Origin will be returned as per the W3
implementation guidelines.

Setting this header when the Access-Control-Allow-Origin is
dynamically generated (e.g. when there is more than one allowed
origin, and an Origin than ‘*’ is returned) informs CDNs and other
caches that the CORS headers are dynamic, and cannot be cached.

If False, the Vary header will never be injected or altered.

Default : True

Decorator

If the CORS extension does not satisfy your needs, you may find the
decorator useful. It shares options with the extension, and should be simple
to use.

	
flask_cors.cross_origin(*args, **kwargs)

	This function is the decorator which is used to wrap a Flask route with.
In the simplest case, simply use the default parameters to allow all
origins in what is the most permissive configuration. If this method
modifies state or performs authentication which may be brute-forced, you
should add some degree of protection, such as Cross Site Forgery
Request protection.

	Parameters

	
	origins (list [https://docs.python.org/3/library/stdtypes.html#list], string or regex) – The origin, or list of origins to allow requests from.
The origin(s) may be regular expressions, case-sensitive strings,
or else an asterisk

Default : ‘*’

	methods (list [https://docs.python.org/3/library/stdtypes.html#list] or string) – The method or list of methods which the allowed origins are allowed to
access for non-simple requests.

Default : [GET, HEAD, POST, OPTIONS, PUT, PATCH, DELETE]

	expose_headers (list [https://docs.python.org/3/library/stdtypes.html#list] or string) – The header or list which are safe to expose to the API of a CORS API
specification.

Default : None

	allow_headers (list [https://docs.python.org/3/library/stdtypes.html#list], string or regex) – The header or list of header field names which can be used when this
resource is accessed by allowed origins. The header(s) may be regular
expressions, case-sensitive strings, or else an asterisk.

Default : ‘*’, allow all headers

	supports_credentials (bool [https://docs.python.org/3/library/functions.html#bool]) – Allows users to make authenticated requests. If true, injects the
Access-Control-Allow-Credentials header in responses. This allows
cookies and credentials to be submitted across domains.

	note

	This option cannot be used in conjuction with a ‘*’ origin

Default : False

	max_age (timedelta, integer, string or None [https://docs.python.org/3/library/constants.html#None]) – The maximum time for which this CORS request maybe cached. This value
is set as the Access-Control-Max-Age header.

Default : None

	send_wildcard (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, and the origins parameter is *, a wildcard
Access-Control-Allow-Origin header is sent, rather than the
request’s Origin header.

Default : False

	vary_header (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the header Vary: Origin will be returned as per the W3
implementation guidelines.

Setting this header when the Access-Control-Allow-Origin is
dynamically generated (e.g. when there is more than one allowed
origin, and an Origin than ‘*’ is returned) informs CDNs and other
caches that the CORS headers are dynamic, and cannot be cached.

If False, the Vary header will never be injected or altered.

Default : True

	automatic_options (bool [https://docs.python.org/3/library/functions.html#bool]) – Only applies to the cross_origin decorator. If True, Flask-CORS will
override Flask’s default OPTIONS handling to return CORS headers for
OPTIONS requests.

Default : True

Using CORS with cookies

By default, Flask-CORS does not allow cookies to be submitted across sites,
since it has potential security implications. If you wish to enable cross-site
cookies, you may wish to add some sort of
CSRF [http://en.wikipedia.org/wiki/Cross-site_request_forgery]
protection to keep you and your users safe.

To allow cookies or authenticated requests to be made
cross origins, simply set the supports_credentials option to True. E.G.

from flask import Flask, session
from flask_cors import CORS

app = Flask(__name__)
CORS(app, supports_credentials=True)

@app.route("/")
def helloWorld():
 return "Hello, %s" % session['username']

The above code enables Flask backend to accept cookies to be submitted from cross origin sites. But if you are sending Xhr requests (ajax calls) to a cross-origin server, by default chrome or any modern browser won’t send cookies and session with the request. You should use withCredentials = True while sending Xhr request to enable that. You should keep in mind about the necessary security concerns. Related MDN doc: https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/withCredentials

Using CORS with Blueprints

Flask-CORS supports blueprints out of the box. Simply pass a blueprint
instance to the CORS extension, and everything will just work.

api_v1 = Blueprint('API_v1', __name__)

CORS(api_v1) # enable CORS on the API_v1 blue print

@api_v1.route("/api/v1/users/")
def list_users():
 '''
 Since the path matches the regular expression r'/api/*', this resource
 automatically has CORS headers set. The expected result is as follows:

 $ curl --include -X GET http://127.0.0.1:5000/api/v1/users/ \
 --header Origin:www.examplesite.com
 HTTP/1.0 200 OK
 Access-Control-Allow-Headers: Content-Type
 Access-Control-Allow-Origin: *
 Content-Length: 21
 Content-Type: application/json
 Date: Sat, 09 Aug 2014 00:26:41 GMT
 Server: Werkzeug/0.9.4 Python/2.7.8

 {
 "success": true
 }

 '''
 return jsonify(user="joe")

@api_v1.route("/api/v1/users/create", methods=['POST'])
def create_user():
 '''
 Since the path matches the regular expression r'/api/*', this resource
 automatically has CORS headers set.

 Browsers will first make a preflight request to verify that the resource
 allows cross-origin POSTs with a JSON Content-Type, which can be simulated
 as:
 $ curl --include -X OPTIONS http://127.0.0.1:5000/api/v1/users/create \
 --header Access-Control-Request-Method:POST \
 --header Access-Control-Request-Headers:Content-Type \
 --header Origin:www.examplesite.com
 >> HTTP/1.0 200 OK
 Content-Type: text/html; charset=utf-8
 Allow: POST, OPTIONS
 Access-Control-Allow-Origin: *
 Access-Control-Allow-Headers: Content-Type
 Access-Control-Allow-Methods: DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT
 Content-Length: 0
 Server: Werkzeug/0.9.6 Python/2.7.9
 Date: Sat, 31 Jan 2015 22:25:22 GMT

 $ curl --include -X POST http://127.0.0.1:5000/api/v1/users/create \
 --header Content-Type:application/json \
 --header Origin:www.examplesite.com

 >> HTTP/1.0 200 OK
 Content-Type: application/json
 Content-Length: 21
 Access-Control-Allow-Origin: *
 Server: Werkzeug/0.9.6 Python/2.7.9
 Date: Sat, 31 Jan 2015 22:25:04 GMT

 {
 "success": true
 }

 '''
 return jsonify(success=True)

public_routes = Blueprint('public', __name__)

@public_routes.route("/")
def helloWorld():
 '''
 Since the path '/' does not match the regular expression r'/api/*',
 this route does not have CORS headers set.
 '''
 return '''<h1>Hello CORS!</h1> Read about my spec at the
W3 Or, checkout my documentation
on Github'''

logging.basicConfig(level=logging.INFO)
app = Flask('FlaskCorsBlueprintBasedExample')
app.register_blueprint(api_v1)
app.register_blueprint(public_routes)

if __name__ == "__main__":
 app.run(debug=True)

Examples

Using the CORS extension

One of the simplest configurations. Exposes all resources matching /api/* to
CORS and allows the Content-Type header, which is necessary to POST JSON
cross origin.
CORS(app, resources=r'/api/*')

@app.route("/")
def helloWorld():
 """
 Since the path '/' does not match the regular expression r'/api/*',
 this route does not have CORS headers set.
 """
 return '''
<html>
 <h1>Hello CORS!</h1>
 <h3> End to end editable example with jquery! </h3>
 JS Bin on jsbin.com
 <script src="//static.jsbin.com/js/embed.min.js?3.35.12"></script>

</html>
'''

@app.route("/api/v1/users/")
def list_users():
 """
 Since the path matches the regular expression r'/api/*', this resource
 automatically has CORS headers set. The expected result is as follows:

 $ curl --include -X GET http://127.0.0.1:5000/api/v1/users/ \
 --header Origin:www.examplesite.com
 HTTP/1.0 200 OK
 Access-Control-Allow-Headers: Content-Type
 Access-Control-Allow-Origin: *
 Content-Length: 21
 Content-Type: application/json
 Date: Sat, 09 Aug 2014 00:26:41 GMT
 Server: Werkzeug/0.9.4 Python/2.7.8

 {
 "success": true
 }

 """
 return jsonify(user="joe")

@app.route("/api/v1/users/create", methods=['POST'])
def create_user():
 """
 Since the path matches the regular expression r'/api/*', this resource
 automatically has CORS headers set.

 Browsers will first make a preflight request to verify that the resource
 allows cross-origin POSTs with a JSON Content-Type, which can be simulated
 as:
 $ curl --include -X OPTIONS http://127.0.0.1:5000/api/v1/users/create \
 --header Access-Control-Request-Method:POST \
 --header Access-Control-Request-Headers:Content-Type \
 --header Origin:www.examplesite.com
 >> HTTP/1.0 200 OK
 Content-Type: text/html; charset=utf-8
 Allow: POST, OPTIONS
 Access-Control-Allow-Origin: *
 Access-Control-Allow-Headers: Content-Type
 Access-Control-Allow-Methods: DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT
 Content-Length: 0
 Server: Werkzeug/0.9.6 Python/2.7.9
 Date: Sat, 31 Jan 2015 22:25:22 GMT

 $ curl --include -X POST http://127.0.0.1:5000/api/v1/users/create \
 --header Content-Type:application/json \
 --header Origin:www.examplesite.com

 >> HTTP/1.0 200 OK
 Content-Type: application/json
 Content-Length: 21
 Access-Control-Allow-Origin: *
 Server: Werkzeug/0.9.6 Python/2.7.9
 Date: Sat, 31 Jan 2015 22:25:04 GMT

 {
 "success": true
 }

 """
 return jsonify(success=True)

@app.route("/api/exception")
def get_exception():
 """
 Since the path matches the regular expression r'/api/*', this resource
 automatically has CORS headers set.

 Browsers will first make a preflight request to verify that the resource
 allows cross-origin POSTs with a JSON Content-Type, which can be simulated
 as:
 $ curl --include -X OPTIONS http://127.0.0.1:5000/api/exception \
 --header Access-Control-Request-Method:POST \
 --header Access-Control-Request-Headers:Content-Type \
 --header Origin:www.examplesite.com
 >> HTTP/1.0 200 OK
 Content-Type: text/html; charset=utf-8
 Allow: POST, OPTIONS
 Access-Control-Allow-Origin: *
 Access-Control-Allow-Headers: Content-Type
 Access-Control-Allow-Methods: DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT
 Content-Length: 0
 Server: Werkzeug/0.9.6 Python/2.7.9
 Date: Sat, 31 Jan 2015 22:25:22 GMT
 """
 raise Exception("example")

@app.errorhandler(500)
def server_error(e):
 logging.exception('An error occurred during a request. %s', e)
 return "An internal error occured", 500

if __name__ == "__main__":
 app.run(debug=True)

Using the cross_origins decorator

@app.route("/", methods=['GET'])
@cross_origin()
def helloWorld():
 '''
 This view has CORS enabled for all domains, representing the simplest
 configuration of view-based decoration. The expected result is as
 follows:

 $ curl --include -X GET http://127.0.0.1:5000/ \
 --header Origin:www.examplesite.com

 >> HTTP/1.0 200 OK
 Content-Type: text/html; charset=utf-8
 Content-Length: 184
 Access-Control-Allow-Origin: *
 Server: Werkzeug/0.9.6 Python/2.7.9
 Date: Sat, 31 Jan 2015 22:29:56 GMT

 <h1>Hello CORS!</h1> Read about my spec at the
 W3 Or, checkout my documentation
 on Github

 '''
 return '''<h1>Hello CORS!</h1> Read about my spec at the
W3 Or, checkout my documentation
on Github'''

@app.route("/api/v1/users/create", methods=['GET', 'POST'])
@cross_origin(allow_headers=['Content-Type'])
def cross_origin_json_post():
 '''
 This view has CORS enabled for all domains, and allows browsers
 to send the Content-Type header, allowing cross domain AJAX POST
 requests.

 Browsers will first make a preflight request to verify that the resource
 allows cross-origin POSTs with a JSON Content-Type, which can be simulated
 as:
 $ curl --include -X OPTIONS http://127.0.0.1:5000/api/v1/users/create \
 --header Access-Control-Request-Method:POST \
 --header Access-Control-Request-Headers:Content-Type \
 --header Origin:www.examplesite.com
 >> HTTP/1.0 200 OK
 Content-Type: text/html; charset=utf-8
 Allow: POST, OPTIONS
 Access-Control-Allow-Origin: *
 Access-Control-Allow-Headers: Content-Type
 Access-Control-Allow-Methods: DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT
 Content-Length: 0
 Server: Werkzeug/0.9.6 Python/2.7.9
 Date: Sat, 31 Jan 2015 22:25:22 GMT

 $ curl --include -X POST http://127.0.0.1:5000/api/v1/users/create \
 --header Content-Type:application/json \
 --header Origin:www.examplesite.com

 >> HTTP/1.0 200 OK
 Content-Type: application/json
 Content-Length: 21
 Access-Control-Allow-Origin: *
 Server: Werkzeug/0.9.6 Python/2.7.9
 Date: Sat, 31 Jan 2015 22:25:04 GMT

 {
 "success": true
 }

 '''

 return jsonify(success=True)

if __name__ == "__main__":
 app.run(debug=True)

Index

 C

C

 	
 	CORS (class in flask_cors)

 	
 	cross_origin() (in module flask_cors)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Flask-CORS

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

